Kapitel 21: Glasplatte mit verschiedenen FEM-Modellen für Biegung

Im folgenden wird gezeigt wie man mit MEANS V12 eine am Außenrand frei aufliegende Glasplatte generieren und berechnen kann.

Zuerst wird im Linien-Modus ein 2D-Platten-Modell erzeugt, daraus wird dann ein 3D-Pentaeder-Volumenmodell extrudiert.

Die Glasplatte läßt sich aber auch mit einem 3D-CAD-System erstellen und über die STEP-Schnittstelle mit Tetraedern vernetzen.

Am Ende werden die verschiedenen Netze mit dem exakten Ergebnis verglichen.

Wählen Sie "Neues FEM-Projekt mit Balken-Linien-Modus erstellen",

es erscheint das Linien-Modus-Menü hier können Knotenpunkte, Linien, Kreise oder Rechtecke für die Netzgenerierung eingegeben werden.

🔜 – 🗆 X
Flächen Knoten Linien
Knoten: 0 Neu
X: 0
Y: 0
Z: 0
Knoten erzeugen
Einzelknoten erzeugen
Linien erzeugen
Rechteck / Kreis

Mit den Registern "Flächen", "Knoten" und "Linien" kann zwischen dem Flächen-, Knoten- und Linien-Modus hin und her gewechselt werden.

Wählen Sie Menü "Rechteck/Kreis" und erzeugen einen Kreis mit Radius = 562 mm.

Kreisbogen Rechteck Neu REDO Aktuelle Elementgruppe: 1 Kreisbogen-Mittelpunkt:
Neu REDO Aktuelle Elementgruppe: 1 Kreisbogen-Mittelpunkt: 1
Aktuelle Elementgruppe: 1 Kreisbogen-Mittelpunkt:
Kreisbogen-Mittelpunkt:
X-Koordinate: 0.00
Y-Koordinate: 0.00
Z-Koordinate: 0.00
Radius: 562
Rasterung: 36
Anfangswinkel: 0
Endwinkel: 360
Kreisbogen erzeugen
Cancel

Mit Menü "2D-Netzgenerator" erzeugen Sie mit der Elementdichte "300" und dem

🛃 2D-Netzgenerator — 🗆 🗙	💀 – 🗆 X
won Elementgruppe: 1 bis Elementgruppe: 1 Elementtyp: PDK3S ->2D-Mindlin-Platte linea ∨ Netzdichte: 300 Fangradius: 5E-06 QUAD-Vierecksnetz erzeugen 3D-Modell extrudieren Knoten in Z-Richtung = 5 Z-Objekthöhe =	Rächen Knoten Linien Knoten: 1 Knoten: 1 X: 562 Y: 0 Z: 0 Knoten erzeugen Einzelknoten erzeugen Linien erzeugen Rechteck / Kreis Knoten manipulieren Knoten vereinen Knoten prüfen
Knoten prüfen Netzverfeinerung Cancel Help	Netzgeneratoren 2D-Netzgenerator 3D-Netzgitter
	DXF-Linien einladen

Elementyp "PDK3S" ein Netz bestehend aus 3000 PDK3S-Platten und 1573 Knoten.

Glasplatte lagern

Die Glasplatte ist am Rand in Z-Richtung gelagert. Wählen Sie Register "Knoten" und Menü "Flächen-Randknoten" und klicken auf "Surface 1" oder wählen Sie aus dem Dropdown-Menü "Kanten" und "Knoten anzeigen" um die Knoten anzuzeigen.

Wechseln Sie oben in das Menüleisten-Register "FEM-Projekt bearbeiten" und wählen das Icon "Randbedingungen" aus und erzeugen mit der Selektion "alle angezeigten Knoten" die Randbedingungen in Z-Richtung. Weiterhin können Sie die RB-Symbole umdrehen oder mit einer anderen Farbe darstellen.

generierung FEM-Projekt bearbe	FEM-Analyse Ergebnisauswertung Training
ellen Randbedingungen 🗹 Ran	edingungen edingungen darstellen Knoten-Modus aktiviert
ellen Randbedingungen Man Randbedingungen Anzahl Randbedingungen Wert der Randbedingungen Freiheitsgrad sperren: Selectieren Freiheitsgrad sperren: Selectieren Freiheitsgrad sperren: RB-Symbole anpassen RB-Symbole anpassen RB-Symbole anpassen RB-Symbole anpassen	Bingungen darstellen Elementgruppen Materialdaten Editor Temperatur Knoten-Modus aktiviert - × el: 144 Neu E: 144 Neu E: 144 Neu E: 144 Neu E: 144 Neu E: 144 Neu E: 144 Neu E: 144 Neu P: 144 Neu P: 144 Neu P: 144 Neu P: 144 Neu 144 Neu P: 144 Neu 12: 144 Neu 12: 14: 14: 14: 14: 14: 14: 14: 14: 14:
	HBs loschen

Flächenlast erzeugen

Die Glasplatte wird mit - 5000 N in Z-Richtung belastet, wählen Sie aus dem Dropdown-Menü "3. Flächenbelastung" und erzeugen eine Flächenlast mit -5000 N mit der Selektion "Flächenmodus" und senkrecht zur Fläche.

2	beiten FEM-Analyse Ergebnisauswertung Training
Belastungen 🖉 Belastungen darstellen Randbedingungen 🖓 Re	Randbedingungen darstellen Elementgruppen Materialdaten Editor 6. Belastungen
💀 Flächenlast erzeugen — 🗆 🗙	
Aktueller Lastfall: 1 - + Anzahl Lastwerte: 0 Neu Wert der Flächenlast: 0 0 N/mm ² O oder in N	
Wert Belastung in N: -5000 Info	
Freiheitsgrad: O in Z-Richtung O Drehung um O Drehung um O senkrecht zur Fläche	
Selektion: Flächenmodus Rechteck aufspannen	
O einzelne Knoten anklicken O alle angezeigten Knoten O Koordinatenbereich definieren O alle angezeigten Surfaces	
Rächenlast-Wert (N/mm ⁻⁷) aus Belastung (N) FL-Farbe:	
Cancel Editor Belastung erzeugen Belastung löschen	

Materialdaten eingeben

Wählen Sie "Materialdaten" und geben die Plattendicken H_1, H_2 und $H_3 = 15$ mm ein. Mit Menü "Material-Datenbank" wählen Sie aus der selbsterweiterbaren Material-Datenbank mit Menü "Material übernehmen" das Material "Glas techisches" mit E-Modul = 50 000 N/mm², Dichte = 2.48E-06 kg/mm³ und Poisson-Zahl = 0.25.

Bela	Belast	ungen darstellen Rar	b hdbedingung	1. R Jen ☑ Ra	andbedi ndbedin	ngungen + gungen darst Knoten-M	ellen Elem	entgru	ppen Material	dater	6. Belastu	ingen	-	Temperatur	
	Materialdaten		— C	1 ×											
	Bezeichnung H1	Materialwerte 👻	🖳 Mater	1 ial-Datenba	ank										
	H2	15	Werkstoff:		Glas te	hnisches		Di	chte (ka/mm³):		2.4800024078786	5E-06		spez, Wär	mekapazität (J/koK);
	H3 E Modul	50000	E-Modul (N	(mm 2) •	50000			w	ärmeausdehnungsk	oeffiz	ient: 0				
-	Dichte	2 480002E-06	Poisson-Za	hle	0.25			W	ärmeleitfähigkeit (M	//mmł	(): 0.001400000664	49643		Sortiere	n nach: Alphabetisc
	Waermekoeffizient	0	0.0001120							,	0.001.0000000				
	Poisson-Zahl	.25				, 									
			Add	Delete	Save	Mat übern	erial ehmen		Datenbank einlac	len	Datenbank	sichern		O Meter	Millimeter
				Werkstoff		E-M	odul		Poisson-Zahl		Dichte		Wārme	ekoeffizient	Wärmeleitfähigkeit
	ementgruppe: 1	Elementityp: PDK3S Anisotrop nk ren	These The second second second second Grauguess Grauguess Grauguess Glas Quad Glas Quad Mamor Auminium Porzellan Zinn Kankie Magnesii Klinker Beton Holz Eis (4 *C PBT Ufrz PBT Ufrz PBT Clar PBT Quad PBT Quad PBT Quad Second PBT Quad Second PBT Quad Second Cast Second	rz m dur B 4406 i rt s TIN T841 66 dur B 4406 eich	GF-1C FR	110000 110000 110000 103000 98000 796000 796000 78000 78000 78000 78000 78000 58000 55000 51000 51000 50000 44000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 2000000		0.36 0.37 0.44 0.22 0.35 0.25 0.3711 0.3711 0.371 0.32 0.42 0.13 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32		<	8 30003E-06 8 300038E-06 8 700038E-06 8 700038E-06 8 700038E-06 1 050001E-05 1 050001E-05 1 925002E-05 2 200002E-06 2 300002E-06 2 300002E-06 2 300002E-06 2 300002E-06 1 724002E-06 0 2 4 00002E-06 1 724002E-06 1 724002E-06		000017 0000104 0000183 00003 0000183 0000189 0000189 000014 0000054 0000022 0000022 0000022 0000022 0000024 0000028 0000058 0000058 0000058 0000017 000017 000017	×	0 0 058 0 12 11 165 314 0012 0028 23 0 0067 0 00014 156 00019 0023 0 00001 00024 00001 00847 0 00026 3.2E-05 0 000023 000026 0.00023 0.00023 0.000185 0 0.0035

FEM-Analyse

Wählen Sie "FEM-Analyse" und das Icon **HEE** um mit dem MEANS-Solver die Verschiebungen und Spannungen mit dem Elementtyp PDK3S zu berechnen.

	0 1	· 🕑 📼									
	Datei	Ansicht	Netzgener	rierung	FEM-P	rojek	t bearbeit	en	FEM-	Analy	se
ļļ	1. FE	Statik M-Analyse	*	FEM-Sol	lver wähle -Ablauf	en	Infos zu Modell- Infos S	m FEN Abme Struktu	/I-Mode essunge urmode	ell in II rs	FEN
		,									
	🖳 F	EM-Analyse					-		>	<	
	C : projekte Valltest /penundtet /2dmesh fem Select Solver O Quick-Solver Schritt 1: FEM-Solver starten Nur Lastvektor neu berechnen										
	Schritt 2: Hostprocessing staften										
		FEM-Solv	er auswählen	Cano	Erge	ebnis <u>c</u>	prößen eins	tellen			

Erzeugung weiterer Elementtypen für Biegung

Erzeugen Sie weitere für Biegungsprobleme geeignete FEM-Netze mit linearen und quadratischen Elementtypen wie PLA6S, SHEL6, PEN6, PEN15, TET4 oder TET10.

Glasplatte mit PLA6S-Plattenelementen

Wählen Sie Register "Netzgenerierung" und "Quad-Netze, Verfeinern, Löschen" und dort Register "Konverter" und "QUA4S<->QUA8S" um aus der 3-knotigen Kirchhoff-Platte PDK3S die 6-knotige quadratische Mindlin-Platte PLA6S zu erzeugen.

Da	itei	Ansicht	Netzgene	rierung	FEM-Projekt	bearbe	iten	FEM-Analyse	Erge	bnisauswe	rtu
						Qua	d-Netze,	Verfeinern, Lösc	hen	Knoten- Jacobi-E	Üb Detr
-Netzg	enerat	or mit STEP, S	STL, IGES 🕞	2D-1	Netzgenerator 🕞	/	Netze	e manipulieren	E.		Net
						/					
	🚽 Qua	d-Netze, Verl	feinern, Lös	chen	/	/		· _ ·		×]
V	ierecke	Verfeinem	Konverter	Extrudien	en Rotieren Lä	ischen	Drehen				
		Elementgrupp	e ändem:	,	von linear <->	fratisch:		MEANS <-> ABA	QUS		
		Scheibenele	mente		QUA4S <-> QU	A8S	[S8 -> SHEL8	3		
		Plattenelen	nente		TET4 -> TET	10	[SHEL8 -> S8	3		
		Schaleneler	mente		TET10 -> TE	Г4	[C3D10 -> TET	10		
		Ringeleme	ente	[HEX8 -> HEX	20	[TET10 -> C3D	10		
	Ac	tual Element	Type:	[HEX20 -> HE	X8	[C3D20 -> HEX	20		
	No	Element type	available								

Glasplatte mit PEN6-Volumenelementen

Wählen Sie Register "Netzgenerierung" und "Quad-Netze, Verfeinern, Löschen" und dort Register "Extrudieren" und erzeugen mit Knoten in Z-Richtung= 3 und Z-Objekthöhe = 15 ein 6-knotiges lineares 3D-Pentaeder-Modell PEN6. Zusätzlich muß die Flächenlast und die Randbedingungen in Z-Richtung neu erzeugt werden.

🖳 Quad	-Netze, Verf		_		×						
Vierecke	Verfeinem	Konverter	Extrudieren	Rotieren	Löschen	Drehen					
	E	s wird ein Bal	ken-, Dreieck	s- oder Vier	recksnetz m	nit Z=0 ber	nötigt.				
	Knoten in Z-Richtung = 3										
	Z-Objekthöhe = 15										
	DXF	UNE	0	30)-FEM-Netz	erzeuger	1	(Cancel		

Glasplatte mit SHEL6-Schalenelementen

Wählen Sie den Quick-Solver um aus dem linearen 2D-Plattenelement PDK3S automatisch die quadratische 3D-Schale S6 zu generieren und zu berechnen.

Vorher aber müssen die Flächenlast und die Randbedingungen in Z-Richtung mit dem Freiheitsgrad 3 geändert werden weil bei 2D-Platten FHG=1 die Z-Richtung ist.

F Belastu	1. Knot Ingen ☑ Belast	enbelastung	Randbedingung	1. Randbedi Jen ☑ Randbedin	ngur	gungen - Elementgruppen Aasteilen Elementgruppen	Ŧ
						Infozeile	
🔡 Bela	astungen				~		
1	Nr.	Element	FHG	Wert	^		
▶ 1		1	3	005064783		🖳 🖳 Freiheitsgrade ändern 🦳 — 🗆 🗙	<
2		2	3	005064783			
3		3	3	005064783		Lastfall andem: 1	
4		4	3	005064783		von: bis:	
5		5	3	005064783		Bereich für Belastung definieren: 1 3000	
6		6	3	005064783		Forthe Barrada Tardam	
7		7	3	005064783		rreineitsgrade andem	
8		8	3	005064783		Freiheitsgrad vorhanden: Neuer Freiheitsgrad:	
9	0.1	9	3	005064783		1 ✓ → 1 ✓ OK	
1	0	10	3	005064783			
1	1	11	3	005064783		2 Wet änder: 3	-
1.	2	12	3	005064783	L,	vient andem	
			1			Wert vorhanden: Neuer Wert:	
Aktuelle	r Lastfall: 1	<	 Anzahl Lastfäl 	lle: 1		005064783> 1E-10 OK	
Anzahl L	Lasten/pro Lastfall:	3000 Lastty	p: 3	Flächenlast			
	Neuer Lastfall erze	eugen	Lastfälle	überlagem		Alle Relastungen die im obigen Bereich liegen löschen	
	Lastfall lösche	n	Lastfälle addie	ren und kopieren	1		
	Lastfall-Fakto)r	Temperatu	irlast einlesen	1		
	Flächenlast->Knot	enlast	Freiheitsg	rade ändem]	Cancel	
		ОК					

Glasplatte mit TET4-Volumenelementen

Die Glasplatte kann aber auch mit dem 3D-Netzgenerator über die STEP-, STL oder IGES-Schnittstelle erzeugt werden.

Erstellen Sie in Ihrem CAD-Programm folgende zwei Zylinder:

Zylinder 1: Durchmesser = 1124 mm und Höhe = 15 mm Zylinder 2: Durchmesser = 100 mm und Höhe = 15.5 mm

wobei Zylinder 2 für eine lokale Netzverfeinerung in der Plattenmitte benötigt wird. Vereinen Sie beide Zylinder zu einem Einzel-Part und erzeugen eine STEP-Datei.

Wählen Sie in MEANS V11 die Registerkarte "Datei" und "Neu" um ein neues FEM-Projekt zu erstellen. Mit "3D-Tetraeder-Netzgenerierung (STL, STEP, IGES) erscheint eine Dialogbox, hier können verschiedene CAD-Formate angezeig werden.

Selektieren Sie mit "Browser" die STEP-Datei und klicken auf "Netzgenerator Nr. 2 mit CAD-File starten" damit es im Netzgenerator dargestellt wird.

Das Modell ist jetzt im Netzgenerator zu sehen und kann beliebig gedreht werden.

Wählen Sie das Menü "Mesh" und "Meshing Options" und generieren mit der Netzdichte "moderate" und dem Hauptmenü "Generate Mesh" ein FEM-Netz.

Das FEM-Netz besteht jetzt aus 6993 Knoten und 28095 Tetraederelementen.

Nach der Netzgenerierung muß das FEM-Netz mit Namen "test.fem" exportiert werden. Wählen Sie das Menü "File" und "Export Mesh" und speichern das Netz "test.fem" in den vorgegeben Debug-Mesh-Pfad.

Nach dem Export von "test.fem" wird MEANS V12 automatisch gestartet und erzeugt zuerst das Flächemodell damit Flächen, Kanten und Knotenpunkte für Belastungen, Randbedingungen oder Elementgruppen selektiert werden können.

Berechnung der exakten Ergebnisse

Eine symmetrisch belastete und am Außenrand frei aufliegende Kreisplatte kann mit einer gewöhlichen Differentialgleichung exakt nachgerechnet werden da nur der Radius als unabhängige Veränderliche erforderlich ist.

Durchbiegung w in der Plattenmitte:

Dicke = 15 mm, Durchmesser D = 1124 mm, Radius R = 562 mm

Gewichtslast F = -5000 N, E-Modul Glas = 50 000 N/mm², Poisson Zahl = 0.25

P = Flächenlast = F / Fläche = - 5000 N / ((3.1416 * D 2) mm2 / 4)

= - 0.005 N/mm²

$$w = \frac{P * R^4}{64 K} * \frac{5 + \mu}{1 + \mu}$$

mit K = $\frac{E * h^3}{12*(1-\mu^2)}$ = $\frac{50\ 000\ N/mm^2*15\ mm*15\ mm*15\ mm}{12*(1-(0.25*0.25))}$

= 15 000 000 N mm

$$w = \frac{-0.005 \text{ N/mm}^2 \times 562 \text{ mm}^4}{64 \times 15\,000\,000 \text{ N mm}} \times 4.2$$

w = -2.1822 mm

Maximales Moment in der Plattenmitte:

$$M_{\text{max}} = M_{\text{X}} = M_{\text{Y}} = \frac{P * R^2}{16} [3 + \mu]$$

=
$$\frac{0.005 \text{ N/mm}^2 * 562 \text{ mm} * 562 \text{ mm}}{16} * 3.25 = 320.8 \text{ N mm}$$

max. Biegespannung in der Plattenmitte:

Biegespannung = 6 * Biegemoment / (Plattendicke)² = 6 * 320.8 Nmm / 15 * 15 mm² = 8.55 N/mm²

Ergebnisvergleiche

Folgende Ergebnisse erhält man für FEM-Netze mit verschiedenen Elementtypen, wobei die linearen Solid-Elementen TET4 oder PEN6 wegen einer zu geringen Netzdichte in Z-Richtung noch sehr ungenau sind und darum nicht für biegebeanspruchte Berechnungen verwendet werden sollten.

MEANS / Abaqus	Elementtyp	Verformungen	Spannung
PDK3S	2D-Kirchhoff-Platte lin.	2.01	7.98
PLA6S	2D-Mindlin-Platte quadr.	2.08	8.28
SHEL6 / S6	3D-Solid-Schale	2.07	8.26
TET4 / C3D4	3D-Solid linear	0.1	2.1
TET10 / C3D10	3D-Solid quadratisch	2.17	8.4
PEN6 / C3D6	3D-Solid linear	1.0	5.3
PEN15 / C3D15	3D-Solid quadratisch	2.07	8.26

Max. Verformungen in Z-Richtung TET10 = 2.17 mm

Max.v.Mises-Vergleichssppannung mit TET10 = 8.4 N/mm²